【算法模版】基础算法

文章目录

      • 快速排序算法模板
      • 归并排序算法模板
      • 整数二分算法模板
      • 浮点数二分算法模板
      • 高精度加法、减法、乘法、除法
      • 高精度加法
      • 高精度减法
      • 高精度乘低精度
      • 高精度除以低精度
      • 前缀和与差分
      • 一维前缀和
      • 二维前缀和
      • 一维差分
      • 二维差分
      • 位运算
      • 双指针算法
      • 离散化
      • 区间合并


快速排序算法模板

快速排序是一种常用的排序算法,它采用分治的思想,通过将数组分为两部分,分别对左右两部分进行排序,从而达到整体有序的目的。

  1. 算法原理
    • 选择数组中的一个元素作为基准(通常选择中间位置的元素)。
    • 将小于基准的元素移到基准的左边,大于基准的元素移到基准的右边。
    • 对基准左边和右边的子数组分别进行递归排序。
  2. 算法模板解析
    • q[] 是待排序的数组,lr 分别表示当前排序的区间左右边界。
    • 使用递归的方式进行排序,当区间长度小于等于 1 时终止递归。
    • 在每一轮排序中,选择中间位置的元素作为基准,即 x = q[l + r >> 1]
    • 使用双指针法将小于基准的元素放到基准的左边,大于基准的元素放到基准的右边。
    • 递归地对基准左右两边的子数组进行排序。
void quick_sort(int q[], int l, int r)
{
    if (l >= r) return;

    int i = l - 1, j = r + 1, x = q[l + r >> 1];
    while (i < j)
    {
        do i ++ ; while (q[i] < x);
        do j -- ; while (q[j] > x);
        if (i < j) swap(q[i], q[j]);
    }
    quick_sort(q, l, j), quick_sort(q, j + 1, r);
}

归并排序算法模板

归并排序是一种稳定的排序算法,采用分治的思想,将数组分成两部分,分别对左右两部分进行排序,然后合并两个有序数组。

  1. 算法原理
    • 将数组分成两半,分别对左右两半进行递归排序。
    • 当两个子数组都有序时,将它们合并成一个有序数组。
  2. 算法模板解析
    • q[] 是待排序的数组,lr 分别表示当前排序的区间左右边界。
    • 使用递归的方式进行排序,当区间长度小于等于 1 时终止递归。
    • 将当前区间分成两半,分别进行递归排序。
    • 将两个有序的子数组合并成一个有序数组。
vvoid merge_sort(int q[], int l, int r)
{
    if (l >= r) return;

    int mid = l + r >> 1;
    merge_sort(q, l, mid);
    merge_sort(q, mid + 1, r);
    
    int k = 0, i = l, j = mid + 1;
    while (i <= mid && j <= r)
        if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ];
        else tmp[k ++ ] = q[j ++ ];
    
    while (i <= mid) tmp[k ++ ] = q[i ++ ];
    while (j <= r) tmp[k ++ ] = q[j ++ ];
    
    for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j];

整数二分算法模板

整数二分算法用于在有序整数序列中查找满足某种条件的元素,是一种高效的查找算法。

  1. 算法原理
    • 在有序整数序列中,使用二分法确定满足条件的元素的位置。
    • 根据条件判断,调整二分查找的边界,直到找到目标元素或确定不存在目标元素。
  2. 算法模板解析
    • 使用两种不同的二分查找模板,根据不同的条件判断确定边界的调整方式。
    • check 函数用于判断当前位置是否满足条件,具体逻辑由具体问题决定。
    • bsearch_1 用于在区间 [l, r] 中寻找第一个满足条件的元素。
    • bsearch_2 用于在区间 [l, r] 中寻找最后一个满足条件的元素。
bool check(int x) {/* ... */} // 检查x是否满足某种性质

// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
int bsearch_1(int l, int r)
{
    while (l < r)
    {
        int mid = l + r >> 1;
        if (check(mid)) r = mid;    // check()判断mid是否满足性质
        else l = mid + 1;
    }
    return l;
}

// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int bsearch_2(int l, int r)
{
    while (l < r)
    {
        int mid = l + r + 1 >> 1;
        if (check(mid)) l = mid;
        else r = mid - 1;
    }
    return l;
}

浮点数二分算法模板

浮点数二分算法用于在浮点数范围内查找满足某种条件的元素,与整数二分算法类似,但需要注意浮点数比较的精度问题。

  1. 算法原理
    • 在浮点数范围内,使用二分法确定满足条件的元素的位置。
    • 根据条件判断,调整二分查找的边界,直到找到目标元素或确定不存在目标元素。
  2. 算法模板解析
    • 由于浮点数比较存在精度问题,需要定义一个足够小的精度值 eps
    • 在二分查找过程中,当区间长度小于 eps 时终止查找。
    • 使用 check 函数判断当前位置是否满足条件,根据条件判断调整边界。
bool check(double x) {/* ... */} // 检查x是否满足某种性质

double bsearch_3(double l, double r)
{
    const double eps = 1e-6;   // eps 表示精度,取决于题目对精度的要求
    while (r - l > eps)
    {
        double mid = (l + r) / 2;
        if (check(mid)) r = mid;
        else l = mid;
    }
    return l;
}

高精度加法、减法、乘法、除法

高精度运算是指对超过计算机表示范围的大整数进行运算,通常使用数组存储大整数,并模拟手工计算的方式进行加减乘除运算。

  1. 算法原理
    • 加法:按位相加,处理进位。
    • 减法:按位相减,处理借位。
    • 乘法:模拟手工乘法,逐位相乘并处理进位。
    • 除法:模拟手工除法,逐位进行除法运算。
  2. 算法模板解析
    • 给出了高精度加法、减法、乘法、除法的模板代码,实现了基本的大整数运算。

高精度加法

// C = A + B, A >= 0, B >= 0
vector<int> add(vector<int> &A, vector<int> &B)
{
    if (A.size() < B.size()) return add(B, A);

    vector<int> C;
    int t = 0;
    for (int i = 0; i < A.size(); i ++ )
    {
        t += A[i];
        if (i < B.size()) t += B[i];
        C.push_back(t % 10);
        t /= 10;
    }
    
    if (t) C.push_back(t);
    return C;
}

高精度减法

// C = A - B, 满足A >= B, A >= 0, B >= 0
vector<int> sub(vector<int> &A, vector<int> &B)
{
    vector<int> C;
    for (int i = 0, t = 0; i < A.size(); i ++ )
    {
        t = A[i] - t;
        if (i < B.size()) t -= B[i];
        C.push_back((t + 10) % 10);
        if (t < 0) t = 1;
        else t = 0;
    }

    while (C.size() > 1 && C.back() == 0) C.pop_back();
    return C;
}

高精度乘低精度

// C = A * b, A >= 0, b >= 0
vector<int> mul(vector<int> &A, int b)
{
    vector<int> C;

    int t = 0;
    for (int i = 0; i < A.size() || t; i ++ )
    {
        if (i < A.size()) t += A[i] * b;
        C.push_back(t % 10);
        t /= 10;
    }
    
    while (C.size() > 1 && C.back() == 0) C.pop_back();
    
    return C;
}

高精度除以低精度

// A / b = C ... r, A >= 0, b > 0
vector<int> div(vector<int> &A, int b, int &r)
{
    vector<int> C;
    r = 0;
    for (int i = A.size() - 1; i >= 0; i -- )
    {
        r = r * 10 + A[i];
        C.push_back(r / b);
        r %= b;
    }
    reverse(C.begin(), C.end());
    while (C.size() > 1 && C.back() == 0) C.pop_back();
    return C;
}

前缀和与差分

前缀和与差分是一种常用的数组处理技巧,可以快速求出数组区间和以及快速更新区间元素。

算法原理

  • 前缀和:将数组中每个位置的元素表示为前面所有元素的和,可以快速求出任意区间的和。
  • 差分:将原数组中相邻元素的差值存储在另一个数组中,可以快速更新区间内的元素。

算法模板解析

  • 给出了一维前缀和、二维前缀和、一维差分、二维差分的模板代码,详细解释了其原

一维前缀和

一维前缀和是指对数组中每个位置的元素,计算其前面所有元素的和并存储在一个新数组中。这种技巧可以快速求出任意区间的和,时间复杂度为 O(1)。

算法原理

  • 假设原数组为 a[],前缀和数组为 S[],则 S[i] 表示数组 a[] 中前 i 个元素的和。
  • 计算前缀和数组时,从左到右依次累加元素即可。
S[i] = a[1] + a[2] + ... a[i]
a[l] + ... + a[r] = S[r] - S[l - 1]

二维前缀和

二维前缀和是对二维数组中每个位置的元素,计算其左上部分所有元素的和并存储在一个新的二维数组中。这种技巧可以快速求出任意子矩阵的和,时间复杂度为 O(1)。

算法原理

  • 假设原二维数组为 a[][],前缀和数组为 S[][],则 S[i][j] 表示原数组中左上部分所有元素的和。
  • 计算前缀和数组时,先按行求出每行的前缀和,然后按列对每行的前缀和进行累加。
S[i, j] = 第i行j列格子左上部分所有元素的和
以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为:
S[x2, y2] - S[x1 - 1, y2] - S[x2, y1 - 1] + S[x1 - 1, y1 - 1]cpp

一维差分

一维差分是一种数组处理技巧,通过对数组中相邻元素的差值进行存储,可以快速更新区间内的元素。

算法原理

  • 给定原数组 a[] 和差分数组 b[],则 b[i] = a[i] - a[i-1]
  • 对于原数组中区间 [l, r] 的元素加上常数 c,可以通过修改差分数组 b[l] += cb[r+1] -= c 实现。
给区间[l, r]中的每个数加上c:B[l] += c, B[r + 1] -= c

二维差分

二维差分是一种对二维数组进行处理的技巧,通过对二维数组中相邻元素的差值进行存储,可以快速更新子矩阵内的元素。

算法原理

  • 给定原二维数组 a[][] 和差分数组 b[][],则 b[i][j] = a[i][j] - a[i-1][j] - a[i][j-1] + a[i-1][j-1]
  • 对于原数组中子矩阵 [x1, y1, x2, y2] 内的元素加上常数 c,可以通过修改差分数组的四个角 b[x1][y1] += cb[x2+1][y1] -= cb[x1][y2+1] -= cb[x2+1][y2+1] += c 实现。
给以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵中的所有元素加上c:
S[x1, y1] += c, S[x2 + 1, y1] -= c, S[x1, y2 + 1] -= c, S[x2 + 1, y2 + 1] += c

位运算

位运算是一种对整数的二进制表示进行操作的技巧,包括与、或、异或、左移、右移等操作,常用于解决一些位操作相关的问题。

算法原理

  • 位运算可以在底层对整数的二进制表示进行操作,常用于解决一些位级别的问题。
  • 例如,通过位运算可以快速判断一个整数的奇偶性、提取某一位的值、计算两个整数的二进制表示中有多少位不同等。
求n的第k位数字: n >> k & 1cpp
返回n的最后一位1lowbit(n) = n & -n

双指针算法

双指针算法是一种通过使用两个指针在数组或序列中遍历或搜索的技巧,常用于求解滑动窗口、两数之和等问题。

算法原理

  • 双指针算法通常使用两个指针分别指向数组的不同位置,根据具体问题的要求移动指针,实现特定的操作。
  • 双指针算法的核心在于寻找合适的条件,确定指针的移动方式。
// 具体问题的逻辑
for (int i = 0, j = 0; i < n; i ++ )
{
    while (j < i && check(i, j)) j ++ ;
}

离散化

离散化是一种对原始数据进行映射,将原始数据转换成连续的整数,常用于处理离散值的问题,如区间查询、离散化后的排序等。

算法原理

  • 离散化将原始数据映射到一个连续的整数区间,可以将离散值转换成连续的序列,方便处理。
  • 离散化的关键在于去重和排序,然后根据原始数据的大小关系确定映射
vector<int> alls; // 存储所有待离散化的值
sort(alls.begin(), alls.end()); // 将所有值排序
alls.erase(unique(alls.begin(), alls.end()), alls.end());   // 去掉重复元素

// 二分求出x对应的离散化的值
int find(int x) // 找到第一个大于等于x的位置
{
    int l = 0, r = alls.size() - 1;
    while (l < r)
    {
        int mid = l + r >> 1;
        if (alls[mid] >= x) r = mid;
        else l = mid + 1;
    }
    return r + 1; // 映射到1, 2, ...n
}

区间合并

// 将所有存在交集的区间合并
void merge(vector<PII> &segs)
{
    vector<PII> res;

    sort(segs.begin(), segs.end());
    
    int st = -2e9, ed = -2e9;
    for (auto seg : segs)
        if (ed < seg.first)
        {
            if (st != -2e9) res.push_back({st, ed});
            st = seg.first, ed = seg.second;
        }
        else ed = max(ed, seg.second);
    
    if (st != -2e9) res.push_back({st, ed});
    
    segs = res;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/582938.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

接口自动化框架篇:使用python连接数据库 - PySQL介绍!

PySQL介绍&#xff1a;使用Python连接数据库的接口自动化框架 在接口自动化测试中&#xff0c;经常需要使用数据库来操作测试数据&#xff0c;验证接口返回的数据是否正确。Python是一种功能强大的编程语言&#xff0c;可以轻松地连接数据库&#xff0c;并进行各种数据库操作。…

保证接口幂等性(token机制)

现在继续讲一讲保证接口的幂等性——使用token机制&#xff0c;并编写代码实现&#xff01; 1. 概念 Token机制是实现接口幂等性的一种常见策略&#xff0c;尤其是在处理如订单创建、支付确认等敏感操作时&#xff0c;确保即使用户因网络延迟、误操作等原因重复提交请求&#…

【TDengine】mac m1解决no taos in java.library.path

前言 使用macos搭建springbootmybatisplus&#xff0c;通过mqtt将数据更新到tdenigne 3.2.3&#xff0c;数据源使用远程服务器的tdengine。 问题 启动时报错&#xff1a; Caused by: java.lang.UnsatisfiedLinkError: no taos in java.library.path 以下是官方文档 打开本…

动手学深度学习——矩阵

1. 基本概念 1.1 标量 标量由只有一个元素的张量表示。 所以标量计算与程度开发中的普通变量计算没有差异。 import torchx torch.tensor(3.0) y torch.tensor(2.0)x y, x * y, x / y, x**y(tensor(5.), tensor(6.), tensor(1.5000), tensor(9.))1.2 向量 向量泛化自标量…

Hbase学习笔记

Hbase是什么 HBase是一个高可靠、高性能、面向列、可伸缩的分布式存储系统。它利用Hadoop HDFS作为其文件存储系统,并提供实时的读写的数据库系统。HBase的设计思想来源于Google的BigTable论文,是Apache的Hadoop项目的子项目。它适合于存储大表数据,并可以达到实时级别。HB…

部署YUM仓库及NFS共享服务

YUN仓库服务 YUM概述 基于RPM包构建的软件更新机制 可以自动解决依赖关系 所有软件包由YUM集中的软件仓库提供 yum软件仓库的常用类型 本地源仓库&#xff1a;baserulfile:// 在线源仓库&#xff1a;baserulhttp:// 或 https:// ftp源仓库&#xff1a;baserulftp:// RPM…

【Java那些事】关于前端收到后端返回的时间格式“2024-04-28T14:48:41“非想要的格式

问题&#xff1a; 后端操作后返回时间格式是"2024-04-28T14:48:41" 而我们想要的是&#xff1a;"2024-04-28 14:48:41", 两个解决方法&#xff1a; 方法一&#xff1a;使用 JsonFormat注解 Data AllArgsConstructor NoArgsConstructor public class Use…

代码随想录算法训练营第五十一天| LeetCode309.最佳买卖股票时机含冷冻期、714.买卖股票的最佳时机含手续费

一、LeetCode309.最佳买卖股票时机含冷冻期 题目链接/文章讲解/视频讲解&#xff1a;https://programmercarl.com/0309.%E6%9C%80%E4%BD%B3%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E6%97%B6%E6%9C%BA%E5%90%AB%E5%86%B7%E5%86%BB%E6%9C%9F.html 状态&#xff1a;已解决 1.思路 …

实验一: 设备密码配置与远程管理

1.实验环境 用路由器和交换机搭建实验环境 2.需求描述 实现管理员主机对交换机和路由器的远程管理 设备上配置的密码都要被加密 3.推荐步骤 对路由器配置的步骤如下&#xff1a; 实现路由器和PC的连通性配置VTY密码和特权模式密码在PC上Telnet 到路由器。 对交换机配置的…

03-JAVA设计模式-观察者模式

观察者模式 什么是观察者模式 Java中的观察者模式是一种常见的设计模式&#xff0c;它允许对象&#xff08;观察者&#xff09;订阅另一个对象&#xff08;被观察者&#xff09;的状态变化&#xff0c;并在状态变化时自动得到通知。 核心&#xff1a; 观察者模式主要用于1&a…

HTML学习笔记(二)

1.HTML图像 图像标签&#xff08;<img>)和源属性&#xff08;src&#xff09; HTML中&#xff0c;图像由<img>标签来定义&#xff0c;<img>是空标签&#xff0c;只包含属性&#xff0c;没有闭合标签。在页面上显示图像需要使用源属性&#xff08;src),src是指…

Docker基本操作 Linux里边操作

docker镜像操作命令: docker images:查看所有镜像; docker rmi:删除镜像 后边可以跟镜像的名字或者id指定要删除的镜像&#xff1b; docker pull:拉取镜像&#xff1b; docker push:推送镜像到服务&#xff1b; docker save :打包镜像 后边有用法; docker load:加载镜像&…

前端JS必用工具【js-tool-big-box】,字符串反转,驼峰转换以及版本号对比

这一小节&#xff0c;我们针对前端工具包&#xff08;npm&#xff09;js-tool-big-box的使用做一些讲解&#xff0c;主要是针对字符串反转&#xff0c;aa-bb-cc转驼峰&#xff0c;以及版本号对比的内容 目录 1 安装和引入 2 字符串反转 3 带有横岗的转驼峰 3.1 转小驼峰 3…

docker-compose编排集成工具,

一、引言 我们知道使用一个 Dockerfile 模板文件可以定义一个单独的应用容器&#xff0c;如果需要定义多个容器就需要服务编排。服务编排有很多种技术方案&#xff0c;今天给大家介绍 Docker 官方产品 Docker-Compose Dockerfile 可以定义一个单独的应用容器&#xff1…

linux,从零安装mysql 8.0.30 ,并且更新至mysql 8.0.36

前言&#xff1a; 系统使用的CentOS 7&#xff0c;系统默认最小安装。 一、基础配置 配置虚拟机IP&#xff0c;需要更改的内容&#xff0c;如下红框中 修改之后 至此&#xff0c;基础配置完成。注意&#xff1a;此处虚拟机网络适配器使用的是&#xff1a;桥接模式 二、软件…

【问题实操】银河麒麟高级服务器操作系统实例,CPU软锁报错触发宕机

1.服务器环境以及配置 处理器&#xff1a; Kunpeng 920 内存&#xff1a; 256G DDR4 整机类型/架构&#xff1a; TaiShan 200 (Model 2280) 内核版本 4.19.90-23.8.v2101.ky10.aarch64 2.问题现象描述 两台搭载麒麟v10 sp1的机器均在系统CPU软锁报错时&#xff0c;触…

Springboot+mybatis升级版(Postman测试)

一、项目结构 1.导入依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apach…

高级数据结构与算法期中测试题

一、判断题 1、In dynamic programming algorithms, some results of subproblems have to be stored even they do not compose the optimal solution of a larger problem. T F 解析:T。在动态规划算法中,必须存储子问题的某些结果,因为他们可能需要用来…

区块链技术:NFG元宇宙电商模式

大家好&#xff0c;我是微三云周丽 随着互联网技术的迅猛发展&#xff0c;电子商务行业逐渐崛起为现代经济的重要支柱。而在这一浪潮中&#xff0c;元宇宙电商以其独特的商业模式和巨大的发展潜力&#xff0c;成为行业的新宠。其中&#xff0c;NFG作为元宇宙电商模式的代表&am…

【4110】基于小程序实现的名片管理系统

作者主页&#xff1a;Java码库 主营内容&#xff1a;SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app等设计与开发。 收藏点赞不迷路 关注作者有好处 文末获取源码 技术选型 【后端】&#xff1a;Java 【框架】&#xff1a;spring…
最新文章